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Impact of a liquid mass on a perfectly plastic solid 

By P. A. LUSH 
Department of Mechanical Engineering, The City University, London 

(Received 1 July 1982 and in revised form 31 March 1983) 

The use of steady, normal and oblique shock configurations is explored in calculating 
the pressure and deformation produced by the impact of a liquid mass on a plane 
solid surface. Since pressures generated are very large, the change in bulk modulus 
of the liquid (water) is accounted for by using an equation of state following Field, 
Lesser & Davies (1979). The impact of a plane-ended liquid mass is analysed using 
a nosmal shock for the cases of a rigid surface and a perfectly plastic surface. For 
the former, i t  is found that pressures somewhat in excess of the ‘water-hammer’ 
pressure of linear acoustic theory are predicted, and for the latter there is a critical 
impact velocity below which no deformation occurs. Above this velocity the surface 
deforms a t  a constant rate, producing a pit with maximum depth at the centre. 

If the liquld mass is wedge-shaped then an  oblique shock is formed, which is 
attached to the contact point provided that the impact Mach number is large enough, 
as originally shown by Heymann (1969). Pressure and deformation velocity can again 
be calculated for the cases of rigid and perfectly plastic surfaces respectively. For a 
rigid surface i t  is confirmed that pressures considerably in excess of the plane-ended 
case are produced at shock detachment. For the plastic surface, i t  is found that there 
is no critical impact velocity and deformation can occur at any velocity as shock 
detachment is approached. For a cylindrical liquid mass with a conical tip, the pit 
produced again has maximum depth a t  the centre, but with a considerably increased 
value. The possible use of these models for pitting caused by microjets associated with 
cavitation bubbles and by impact of liquid drops is discussed. 

1. Introduction 
I n  this paper the use of steady two-dimensional shock configurations is explored 

further for the purpose of estimating the pressure and deformation produced by the 
impact of a liquid mass on a plane surface. Some knowledge of these quantities is 
desirable in understanding the mechanism of erosion produced by a cavitating flow 
or by impacting rain drops. Previously the impact of plane-ended or spherical liquid 
masses on a rigid surface has received considerable attention and pressures of the same 
Grder as the water-hammer pressure, calculated according to  linear acoustic theory, 
have been both predicted and observed experimentally (for up-to-date summary see 
Brunton & Rochester 1979). 

The problem of the impact of spherical drops was advanced by Heymann (1969), 
who considered the case of a wedge-shaped liquid mass impinging on a rigid surface; 
since the angle between the liquid and solid surfaces is constant, the contact point 
moves a t  a constant velocity and problem can be tackled as a steady flow through 
a plane oblique wave, which is at rest in a reference frame moving with the contact 
point. He4man.1 showed that a maximum pressure of around three times the 
‘ water-hammer ’ pressure was produced when the shock became detached from the 
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contact point. More recently, Field, Lesser & Davies (1979) have reworked Heymann’s 
analysis using an equation of state for the liquid (water) which allows more accurately 
for the increase in density and sound speed with pressure. 

Also recently, the present author (Lush 1979) has adapted the model originally used 
by Bowden & Brunton (1961), i.e. the impact of a plane-ended liquid cylinder upon 
a rigid surface, to calculate the deformation of a perfectly plastic surface under a 
similar impact. The velocity of deformation is determined from the momentum 
equation assuming that the pressure is constant and equal to  the stress required for 
plastic flow. Liquid compressibility is allowed for by using the same equation as Field 
et al. When account is taken of the propagation of a pressure release wave towards 
the centre of the cylinder, the maximum depth of penetration in the centre can be 
calculated. This paper seeks to combine these two ideas, namely the use of a 
wedge-shaped liquid mass and perfectly plastic deformation, in order to  find the 
deformation produced by conically ended liquid jets in a perfectly plastic medium. 
It is suggested that this model might be applicable to the case of microjets associated 
with cavitation bubbles. The curvature of the liquid surface in the case of droplets 
means that the contact point is decelerated as the impact proceeds and the method 
does not therefore strictly apply, although it may be used to give an indication of 
the deformation. Lesser (1979) has given a solution for the spherical droplet which 
allows the pressure distribution under the droplet to be calculated for the case of a 
rigid solid and he has recently (1981) extended this solution to the case of impact 
on an elastic medium. Therefore i t  would seem that consideration of a perfectly plastic 
medium is timely and t,his is the main purpose of this paper, though the case of a 
rigid medium is considered for completeness. 

2. Impact of a plane-ended liquid mass 
We consider first the impact of a plane-ended liquid mass on a plane solid surface. 

The direction of motion of the liquid mass is a t  right angles to the surface, the plane 
end being parallel to the surface. When the liquid strikes this surface a normal shock 
wave is propagated against the liquid stream, and behind the shock the liquid velocity 
is reduced and the pressure increased. The exact relation between them is determined 
by the response of the surface, which is initially assumed to be quite general. 
Assuming, for the moment, that  the liquid mass is infinitely wide, the problem can 
be analysed in one-dimensional terms and is most simply done in a reference frame 
moving with the shock, since in this frame the flow is steady (figure 1 ) .  If the velocity 
of the liquid is initially v, the velocity behind the shock is u and the velocity of the 
shock wave is - c, which is not necessarily equal to the sound speed, then, in the steady 
flow reference frame, the equation of continuity is 

&@+C)  = p(u+c), ( 1 )  

where is the ambient density of the liquid and p that  behind the shock. If the 
pressure behind the shock is p ,  then by conservation of momentum it can be shown 
that 

where pa is the ambient pressure. Equations ( 1 )  and (2) can be solved provided that 
the relation between pressure and density is known. It is usual to assume that the 
relation for water has the form 

p-Po = f i ( u + c )  ( v -u ) ,  ( 2 )  
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FIGURE 1.  Normal-shock configuration for ( a )  unsteady and ( b )  steady reference frames. 

where n x 7 and B x 300 MPa. Strictly (3) applies only to isentropic changes, but can 
be applied with reasonable accuracy in general since n is independent of entropy and 
B and p,, are only slowly varying functions of entropy (see Batchelor 1967). For small 
values of the change in velocity, v -u ,  the quantity p,,(w+c) in ( 2 )  reduces to the 
familiar acoustic form poco, where co is the ambient sound speed. Since for water p,, 
and co are approximately 1000 kg/m3 and 1450 m/s respectively, for all but the 
smallest velocities, i.e. greater than about 10 m/s, the ambient pressure (assumed to 
be 0.1 MPa) can be neglected in both (2) and (3). With this approximation the relation 
between pressure p and velocity difference v - u  is 

v - u  = [f (1 -( 1 +5>””>1’ (4) 

If the impact is with a rigid surface, then u is zero, and (4) gives the impact pressure 
in terms of the impact velocity (figure 2 ) .  It can be seen that the pressure generated 
increases considerably above that given by the acoustic approximation, i.e. p,,cov. If 
the surface is elastic then a relation between p and u is known in terms of the elastic 
modulus of the material, and together with (4) can be used to solve for the pressure. 
However, in the present work we are interested in a surface which responds as a rigid 
solid until a certain compressive stress is reached and then behaves as a perfectly 
plastic solid, for which the stress will remain constant, equal to p, ,  say. I n  this case 
(4) can be rewritten to give the velocity of deformation u in terms of the impact 
velocity v and the stress to produce plastic flow, p,, i.e. 

u = v-vo, (5a )  

where 

vo = (1 - (1 +9-1’n)]i. 
It is apparent that the impact velocity must exceed a certain critical value w,, before 
any plastic deformation can occur. The relation ( 5 b )  is effectively given in figure 2 .  

Hitherto we have assumed that the liquid mass is infinite in width; but in reality 
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FIQURE 2. Pressure p generated by impact of plane-ended liquid mass at 
velocity 2, on a rigid surface. 

this will not be the case, and, as soon as the liquid strikes the surface, a release wave 
will propagate from the edge of the liquid mass towards the impact centre a t  the 
ambient sound speed. Assuming the liquid mass to  be a cylinder of radius a ,  the 
pressure a t  the centre will decrease after a time a/co from the value given by (4) to 
the stagnation pressure +p,,v2, which will be an order of magnitude smaller unless 
exceptionally high impact velocities are encountered. 

For the perfectly plastic material, i t  is assumed that a t  any instant the situation 
is the same as that for a two-dimensional flat punch penetrating the surface and 
producing large-scale deformation (figure 3). This problem can be solved by using 
slipline theory (see Tabor 1951), which shows that the stress Pnormal to the surface 
under the punch is given by 

P = 2k(l +in) (6) 

and the transverse stress Q by 
n 

Q = 2k- 
2 (7) 

where k is the critical value of the maximum shear stress at which plastic flow occurs. 
Depending on the criterion for plastic flow which is adopted, the value of 2k is either 
1.0 or 2 / 4 3  times the uniaxial yield stress Y .  It is usually reckoned that the normal 
stress required for full-scale plastic flow, using (6), is given approximately by 

P = 3 Y ( = p y ) .  (8) 
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FIGURE 3. Impact of plane-ended liquid mass showing slipline field in plastic region. 

Once the material is plastic, the velocity of deformation is determined by the 
external conditions and can be obtained from the above analysis (equation ( 5 ) ) .  The 
amount of deformation at any point can then be estimated by taking into account 
the velocity components at the surface of the plastic region, both normal and parallel 
to the surface, and the time available for movement to occur. However, we can avoid 
this complication by considering only the centre of the impact, where the only motion 
will be normal to the surface and the depth of penetration will be a maximum. If 
it is assumed that plastic flow is established immediately, and that it ceases as soon 
as the release wave reaches the centre, the time available for deformation will be 
simply equal to the time taken for the wave to travel across the radius of the liquid 
cylinder ; i.e. a/co, assuming that it travels at the ambient liquid sound speed. Since 
the deformation velocity given by ( 5 )  is constant, the depth d of penetration at the 
centre is given simply by the product of the velocity u from ( 5 )  and the time available, 
i.e. by 

(9) 

We are here ignoring the correction required to allow for the time delay before plastic 
flow can be established (see Lush 1979). Immediately after the impact, the stress field 
in the central region is the same as for an infinitely wide liquid mass. Release waves 
from the edge of the liquid propagate in both the solid and the liquid, the former 
being considerably faster. After the release wave in the solid has reached the centre, 
full-scale plastic flow as for a flat punch can be established, and this does not cease 
until the liquid release wave reaches the centre. The correction mentioned above may 
be omitted in principle if we idealize the material as rigid-perfectly plastic, in which 
case the effect of the impact is communicated instantaneously to the material and 
there will be no plastic wave. In reality there will be both elastic and plastic waves 
propagating in the material. Further consideration of this point is deferred until the 
end of $4. 

d V - V ~  

a co 
- -- - 
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FIGURE 4. Oblique shock configuration for ( a )  unsteady and ( b )  steady reference frames. 

3. Impact of wedge-shaped liquid mass 
3.1. General equations 

We now consider the normal impact a t  velocity v of a wedge-shaped liquid mass upon 
a plane surface, in which the front face of the wedge is plane but makes an angle p 
with the surface (figure 4). This is the configuration studied by Heymann and by Field 
et al. for impact on rigid surfaces, but the following development is for general 
surfaces. As pointed out originally by Bowden & Field (1964), if the angle is 
sufficiently small the contact point moves supersonically and an oblique shock forms 
a t  the contact point, making an angle a, say, to  the original surface. For the 
wedge-shaped configuration both the velocity of the contact point and the shock and 
contact angles, a and p respectively, remain constant and therefore the problem can 
be analysed as a steady flow in a reference frame in which the contact point is at 
rest. I n  this reference frame which is moving parallel to the surface at velocity v cot b, 
the liquid approaches the surface at an angle p and with a velocity v cosec p. Behind 
the oblique shock, the liquid changes direction and has a velocity u, say, which can 
conveniently be resolved into components normal and parallel to the original surface, 
u, and ut respectively. 

The shock problem is analysed by resolving the velocity upstream of the shock into 
components normal and parallel to  the shock, v,, and vt, i.e. 

v,, = vcosecpsin(a+P), vt = vcosecpcos(a+p). (10) 

On passing through the shock, the normal component is changed to vn2, but the 
transverse component vt is unchanged. The components normal and parallel to the 
original surface are therefore given by 

u, = vn2 cos a- vt sin a, ut = vn2 sin a+ vt cos a. (11) 

The equations of continuity and conservation of momentum are used to relate the 
normal velocity components to the pressure and density behind the shock, i.e. 

pOVn, = Pn,, (12) 

P-Pa = pOvn,(Vn, -vn,). (13) 

Making use of the equation of state (3) and the relations (lo),  and also neglecting 
the ambient pressure as before, i t  can be shown that the pressure is given implicitly 

p = p,v2cosec2/?sin2(cc+/?) 1 - 1 f-  . [ ( ;)""I 
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Using ( l l ) ,  the normal velocity is given by 

u, = v cosec psin (a  + P, cos a [ ( 1  +$) 
-tan (a  + P, tans I. 

These equations will in general give either two solutions, corresponding to the weak 
and strong shock cases, or no solution. The transition between the two regions gives 
the locus where the oblique shock just becomes detached from the contact point. 
In this case, since the front face of the liquid wedge is a free surface, a release wave 
will propagate into the liquid, thus allowing the liquid to flow laterally and the 
pressure to decrease to ambient. The condition for shock detachment is found in 
general by simultaneously equating the differentials dv  and d p  to zero. Then the 
boundary condition of either rigid surface i.e. u, = 0 or perfectly plastic surface, 
dp = 0, allows an expression to be deduced. 

3.2. Rigid surface 

In the case of a rigid surface, the normal velocity component is zero, and (15)  becomes 

tan(a+P,  
I+'=[ B t a n a  1 

On incorporating this into (14), i t  can be shown that this equation reduces to 

For given values of impact velocity v and wedge angle /3 it is possible to solve (16)  
and (17)  for the impact pressure p and the shock angle a. Since a is of secondary 
interest, the solution is shown graphically (figure 5 )  as the variation of impact 
pressure with impact velocity v and angle p. When p is zero these equations are 
singular, but it can be shown that, if the shock angle a also tends to zero, (16)  and 
(17)  reduce to (4), i.e. the plane-ended case. The curve derived from (4) is also shown 
in figure 5.  

The curves are truncated at shock detachment, showing only the weak-shock 
solution ; this is taken to be the appropriate one because it agrees with the plane-ended 
case as ,4 tends to zero. The shock-detachment condition is found by differentiating 
(16)  and (17)  and putting dv and dpequal to zero, from which i t  may be deduced 
that 

- 11.  
sin 2a 

When the left-hand side of (18), which is effectively the square of the impact Mach 
number, becomes less than the right-hand side, the shock will become detached. 

The locus of shock detachment is approximately linear, and it is found that the 
value of p/p,c,v is always greater than the minimum value of approximately 2.82, 
which occurs a t  the impact velocity of about 150m/s, corresponding to a Mach 
number of 0.1. This result agrees well with those given by Heymann and by Field 
et al., and indicates that  the impact pressure is given to a good approximation by 

p = 2.9p,c0v, (19)  

with no more than a 3 % error between the impact velocities of 70 and 340 m/s. 

13 F L M  135 
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FIGURE 5. Pressure p generated by impact of wedge-shaped liquid mass at 
velocity v on a rigid surface. 

3.3. Perfectly plastic surface 
We turn now to the case of a perfectly plastic surface, for which the pressure will 
remain constant but the velocity normal to the original surface will be non-zero in 
general. The results (14) and (15) can be rewritten in terms of p,, the stress for plastic 
flow, as follows: 

P Y l P ,  
[l - ( 1  +py/B)- ' ln 

v cosec psin (a + P, = 

[( pBy)-l'n t a n ( a + B  tans I. u, =vcosecpsin(a+P,cosa 1+- - 

These equations may be solved for the shock angle a and normal velocity u, in terms 
of wedge angle p, impact velocity v and plastic flow stress p ,  subject to  the condition 
that u, is positive, since negative values will be physically impossible. Since once 
again the shock angle is of secondary importance, the result, shown in figure 6, gives 
only the variation of normal velocity with impact velocity and wedge angle; the 
plastic flow stress is chosen as 400 MPa, which is a typical figure for 99 % pure 
aluminium. I n  the limit of both a and p tending to zero, it can be shown that (20) 
and (21) reduce to the result for the plane-ended case (5). 

The shock-detachment condition may be deduced on differentiating (20) and 
putting dv  and dp equal to zero to  obtain 
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FIGURE 6. Deformation velocity u, produced by impact of wedge-shaped liquid mass at 
velocity v on a perfectly plastic surface for p ,  = 400 MPa. 

from which it follows that a+p must be equal to 90'. The shock remains attached 
to the contact point provided that a+P is less than 90'. At shock detachment i t  
follows immediately from (20) and (21) that  

I: v = sinP[ PYlP ,  
1 - ( 1  +py/B)-'/n ' 

u n = n ( l + ~ )  - l / n  . 

From (23) i t  can be seen that the critical value of p is approximately linearly 
proportional to v, for small values of p, and from (24) it follows that the shock- 
detachment locus, shown in figure 6, is a straight line passing through the origin with 
a slope dependent on the plastic flow stress. 

If we now assume that the impact velocity and wedge angle are such that shock 
detachment does not occur, and also adopt the same model of large-scale plastic flow 
as in the plane-ended case, then the material behind the shock deforms at a constant 
velocity normal to the original surface, both while the shock remains attached to the 
contact point (figure 7)  and during the passage of release waves (similar to figure 3). 
The amount of deformation will again depend on the time available before release 
waves cause the plastic flow to cease. It is possible that the velocity component 
parallel to the surface behind the shock will cause a substantial transverse shear stress, 
which will alter the normal stress required to maintain plastic flow; see (6) and (7). 
It is normally assumed that such viscous stresses are negligible (see e.g. Heymann 
1969), but the validity of this assumption is not obvious, since viscous layers will be 
very thin giving rise tc large velocity gradients. The transverse velocity behind the 
shock relative to the surface is typically an order of maghitude smaller than that of 
the contact point itself, i.e. of order 100 m/s; assuming that the time available for 
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FIGURE 7 .  Impact of wedge-shaped liquid mass showing slipline field in plastic region. 

the viscous layer to grow is of order 1 ps, then, for water a t  normal temperature, the 
viscous-layer thickness will be of order 1 pm, giving a shear stress of order 0.1 MPa. 
This is a large stress by normal standards, but in this context i t  is quite negligible 
since the stresses generated in the solid are of order 100 MPa. 

We consider a cylindrical liquid mass of radius a with a conical tip ; the inclined 
face makes an angle ,8 with the surface which is normal to the direction of motion. 
Again, considering only the centre of the impact, where the depth of penetration will 
be a maximum, the time for deformation will be equal to  the sum of the time required 
for the contact point to travel to the edge of the liquid jet and the time taken for 
the release wave to  travel back, i.e. 

a (___ 1 + L). 
v c o t p  co (25) 

The depth of penetration is therefore found by taking the product of the deformation 
velocity u, and the time available, and hence the maximum depth is given by 

d u, cotan,8 
a -  co(  v + I > .  

__- 

Because of the finite time required for the contact point to travel across the jet, the 
time available will in general be greater than that for the plane-ended jet. Coupled 
with the result that  the deformation velocity is also greater (figure 6), the maximum 
depth of penetration will be considerably in excess of the plane-ended case. Strictly 
this model can only apply if the velocity of the contact point is less than the bulk 
sound speed in the solid material. Only in this case can the full-scale plastic 
deformation be established instantaneously around the point of contact. If the 
contact point is supersonic with respect to the solid, then the material behind the 
initial wave will be in a state of incipient plastic flow until a release wave has 
propagated in the solid, after which the full-scale plastic deformation can take place. 
The critical impact velocity is found by equating v cot p to the bulk sound speed in 
the solid material. Taking this to be 6300 m/s, i.e. for aluminium, the critical velocity 
ranges from about 110 m/s a t  p = 1' to 550 m/s at ,8 = 5'. 

On combining (20) and (21) with (26), the maximum depth of pit expressed as d / a  
can be calculated as a function of impact velocity for various values of p (figure 8). 
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FIGURE 8. Maximum depth d produced by impact of wedge-shaped liquid mass at velocity v on 
ti perfectly plastic surface. 

By applying the condition ( 2 2 ) ,  the shock detachment locus also shown in the figure 
is given by 

which is a straight one passing through the origin if p is small. 
The results given by figures 6 and 8 are for a plastic flow stress of 400 MPa. If other 

values are considered it is found that the overall picture is unchanged but the details 
are different. I n  general, as the plastic flow stress is increased, the critical impact 
velocity required to  maintain the attached shock configuration is also increased, and 
the deformation velocity and maximum depth a t  a given impact velocity are 
decreased (figure 9). It is interesting to note that a t  a constant wedge angle the 
maximum depth varies only slowly with impact velocity, since the reduction in 
deformation velocity is almost compensated by the increase in time available. 

4. Discussion 
For the normal impact of a plane-ended cylinder of water on a rigid surface, it can 

be seen that the stress produced is given quite accurately by the ‘water-hammer’ 
expression for impact velocities below about 100 m/s. At higher velocities, the change 
in bulk modulus of the liquid causes a substantially higher stress to be produced. For 
impact with a surface producing plastic flow a t  a constant stress, there is a critical 
minimum or threshold impact velocity whose value is dependent on the material, and 
below which no permanent deformation occurs; above this velocity any change in 
impact velocity produces an equal change in deformation velocity. On taking into 
account the time available for deformation, the maximum depth of penetration can 
be calculated. Although the maximum depth is directly proportional to  the difference 
between the impact velocity and the threshold impact velocity, the variation with 
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Maximum depth d produced at shock detachment by impact of wedge-shaped 
mass at velocity on a perfectly plastic surface. 

liquid 

impact velocity is essentially nonlinear because of this threshold velocity. Quite large 
plastic strains, far in excess of the elastic limit, can be produced according to this 
model. The value of the threshold velocity depends directly on the stress required 
for plastic flow. Because of the similarity of the pitting process to an indentation test 
to measure hardness, the stress required to produce plastic flow is the same as that 
given by a hardness test, which appears to  provide a convenient way of estimating 
i t  for different materials. Because of the large rates of strain involved in impact 
damage, i t  would be more appropriate to use dynamic hardness, as measured by a 
falling-ball scleroscope. The figure quoted above for 99 yo pure aluminium was taken 
from a diamond-pyramid test, which gave a value of 40, i.e. approximately 400 MPa;  
a falling-ball test on the same material gives a stress in the region of 1300 MPa, larger 
by a factor of more than three. Therefore, for the plane-ended impact, even quite 
soft materials like aluminium will require a very large threshold velocity, in excess 
of 500 m/s, to  produce plastic deformation. 

If the front face of the impacting liquid is inclined at a small angle to the surface, 
the stress produced on a rigid surface can be increased quite considerably. The larger 
the angle, the higher is the stress produced, but the velocity has to be high enough 
to ensure that the oblique shock remains attached to  the contact point, thus delaying 
the propagation of the release wave. In  fact there is a locus of shock-detachment 
points which may be regarded as an upper limit of impact stress produced given by 
(19); just as the plane-ended case, i.e. zero contact angle, can be regarded as a lower 
limit, given by (4) with u = 0. 

For the plastic surface impacted by liquid inclined a t  a small angle to the surface, 
it is found that the deformation velocity and maximum depth are likewise increased 
compared with the plane-ended case. There is now no threshold impact velocity, but 
there is an upper limit to the deformation given by the shock-detachment locus, (24) 
and (27). Thus the main effect of having a wedge-shaped liquid mass is to allow 
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deformation to occur at impact velocities right down to zero. The effect of hardness, 
i.e. p,, is simply to modify the amount of deformation. 

It should be noted that we have deliberately restricted the calculation to the 
maximum depth of pit, i.e. a t  the centre, because finding the exact pit profile requires 
a more detailed treatment of the plastic flow; in particular, allowance must be made 
for the displacement of material outside the zone of contact, which is in a different 
direction to displacement within the zone. 

If this model is to  be applied to the pitting produced by the microjet associated 
with cavitation-bubble collapse, it is necessary to  assume that the cavity is in contact 
with the surface and that the microjet has a conical tip with a semiangle almost as 
large as 90' and a radius considerably smaller than the initial cavity radius. The 
calculations of Plesset & Chapman (1971) indicate that the microjet radius is about 
one-tenth of the initial cavity radius and also that microjet velocities are very high, 
being given by 12.8(Ap/p0):, where Ap is the pressure difference tending to collapse 
the cavity. For Ap between 0.1 and 1 MPa, the microjet velocity will be between 130 
and 400 m/s approximately, assuming that the fluid is water, and the shock will 
remained attached provided that the wedge angle is not greater than about 4' and 
12' respectively for a material of hardness corresponding to  400 MPa, from (23). For 
softer materials these angles are increased somewhat and for harder materials they 
are reduced. Plesset & Chapman also show that the microjet tip is approximately 
conical with a semiangle of about 5 5 O ,  corresponding to a wedge angle of 35'; this 
value is much too large for the shock wave to be produced a t  velocities as low as 
400m/s. However, if we simply postulate that some microjet impacts will have 
sufficiently small wedge angles for the shock to remain attached, then the largest pit 
depths will be produced at shock detachment. Since this locus passes through the 
origin, damage can occur a t  any velocity. This contrasts with the plane-ended case, 
which predicts a threshold velocity below which no damage occurs. 

Similar consideration may be given to  the erosion produced by droplets. Since the 
surface of the drop is curved, the model cannot strictly be applied because the contact 
point is decelerating; however, if i t  is assumed that, at any instant when the contact 
angle is @, the above model gives, in the vicinity of the contact point, the value of 
pressure for a rigid surface or deformation velocity for a plastic surface, then the 
distribution of pressure or normal velocity can be calculated. The model then predicts 
a pressure or normal velocity corresponding to  pequal to  zero at the impact centre; 
both of these increase towards the edge of the impact as @ increases. They reach a 
maximum when p becomes large enough for shock detachment and the subsequent 
jetting to occur. Pressure distributions of this type have been observed experimentally 
by Brunton & Rochester (1979) and calculated using a more accurate method by 
Lesser (1979). The former have found pressures around pocov at the impact centre, 
rising to 2.5p,,c0v a t  the edge of the impact, where the figures have been corrected 
to an impact on a rigid surface. The edge pressure agrees quite closely with the 
pressure produced a t  shock detachment (19). 

For the plastic surface, the deformation velocity will be a maximum a t  shock 
detachment, but the time available for deformation will be a maximum at the centre 
of the impact. Therefore, in general the pit depth will not necessarily be a maximum 
a t  the centre, and, as mentioned previously, calculation of the exact pit profile will 
require more detailed treatment of the plastic flow. 

The present model idealizes the response of the material as rigid-perfectly plastic, 
implying that the impact is communicated instantaneously to the whole material 
volume and that there is no plastic wave propagated into the material. These 
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assumptions can only be justified on grounds of simplicity to aid understanding in 
the first instance ; considering an elastic-perfectly plastic material is the next step 
logically. Indeed this has already been alluded to in discussion of the establishment 
of plastic flow either immediately behind the elastic ‘precursor’ wave or after the 
passage of a release wave in the solid. It can be shown that one of the main effects 
of incorporating elasticity is to increase the threshold velocity vo by p , / p ,  c,, where 
pn and c ,  are the density and bulk sound speed respectively of the solid material. 
For the aluminium considered here, this increase amounts to  about 24 m/s, i.e. about 
11 yo. Another effect occurs if the contact point is moving supersonically with respect 
to  the solid material. I n  this case the large-scale plastic deformation cannot be 
established until a release wave has been propagated in the solid; consequently there 
is less time availabls for deformation to occur. The conditions when this is important 
lie below the sonic line shown in figure 8;  the effect is mostly confined to  the very 
small angles and high impact velocities. 

A further step to  make the model more realistic is to adopt an elastic-plastic 
material with a bilinear stress-strain curve. I n  this case the gradient of the plastic 
part of the curve gives the speed of propagation of the plastic wave. If this is known 
then the pressure and deformation velocity produced by the impact can be calculated. 
Preliminary calculations indicate that the deformation velocity is reduced by about 
50% when the effective specific acoustic impedance of the plastic material, i.e. 
material density times plastic wave speed, approaches that of the liquid. Also, in this 
case, the plastic deformation will not cease immediately on passage of the release wave 
but when the stress has been reduced to  the yield stress. 

5.  Conclusions 
The above analysis of normal and oblique shocks in liquid (water) has been used 

to extend Bowden & Brunton’s (1961) model of the impact of a plane-ended liquid 
mass and Heymann’s (1969) model of the impact of a wedge-shaped liquid mass on 
a rigid surface to the impact on a perfectly plastic surface. The results confirm that 
of Heymann and of Field et aE. (1979) for the case of impact on a rigid surface by 
showing that, for a plane-ended impact, the pressure produced is somewhat in excess 
of the linear ‘water-hammer ’ pressure because of the increase in liquid bulk modulus; 
for the wedge-shaped impact i t  was confirmed that the impact pressure is increased 
as shock detachment is approached reaching a value of about three times the 
‘ water-hammer ’ pressure. 

If the solid is perfectly plastic and it is assumed that the large-scale plastic 
deformation is immediately established in the impact zone, then for the plane-ended 
case the model predicts a threshold impact velocity below which no deformation can 
occur. When this is exceeded the rate of deformation is constant, and, if the impacting 
liquid mass is cylindrical, the maximum depth of pit, produced a t  the centre of the 
impact, is proportional to  the cylinder radius and the excess of impact velocity over 
the threshold velocity. The threshold velocity depends upon the stress required to 
produce full-scale plastic flow, which is effectively the hardness of the material. The 
threshold impact velocities for normal engineering materials are rather large, possibly 
outside the range that would normally be encountered in, for example, cavitation- 
bubble microjets. 

This difficulty with the model can be resolved by considering a wedge-shaped liquid 
mass, for which the rate of deformation increases as shock detachment is approached. 
When this occurs, the shock is a t  right-angles to  the oncoming flow, viewed in a 
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reference frame fixed to the contact point. There is now no threshold velocity, and 
deformation can occur a t  any impact velocity provided that the wedge angle has a 
suitable value. For the impact of a cylindrical mass with a conical tip, the maximum 
possible depth, corresponding to  shock detachment, occurs a t  the centre of the impact 
and is directly proportional to cylinder radius and impact velocity. This depth 
diminishes with increasing plastic flow stress. The model can possibly be used to find 
the pit geometries for the impact of microjets, associated with cavitation bubbles, 
and spherical droplets on a perfectly plastic surface. 
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